<menuitem id="ujwzr"><rt id="ujwzr"></rt></menuitem>
<dfn id="ujwzr"><i id="ujwzr"></i></dfn>
  • <menuitem id="ujwzr"><i id="ujwzr"><em id="ujwzr"></em></i></menuitem>
    <menu id="ujwzr"><tt id="ujwzr"><tfoot id="ujwzr"></tfoot></tt></menu>
    <menu id="ujwzr"><rp id="ujwzr"><dd id="ujwzr"></dd></rp></menu>
      <samp id="ujwzr"><i id="ujwzr"></i></samp>
      <menuitem id="ujwzr"><rt id="ujwzr"><em id="ujwzr"></em></rt></menuitem>
      <menuitem id="ujwzr"></menuitem>
      <menuitem id="ujwzr"><i id="ujwzr"><nobr id="ujwzr"></nobr></i></menuitem>
      <sup id="ujwzr"></sup>
      加入收藏 在線留言 聯系我們
      關注微信
      手機掃一掃 立刻聯系商家
      全國服務熱線18030129916

      同步傳輸控制 1794-OF4IXT 羅克韋爾 模塊

      更新時間
      2025-01-06 13:30:00
      價格
      138元 / 件
      品牌
      A-B
      型號
      1794-OF4IXT
      產地
      美國
      聯系電話
      0592-6372630
      聯系手機
      18030129916
      聯系人
      蘭順長
      立即詢價

      詳細介紹

      同步傳輸控制  1794-OF4IXT 羅克韋爾 模塊

      1756-A10

      1756-A13

      1756-A17

      1756-A4

      1756-A7

      1756-BA1

      1756-BA2

      1756-BATA

      1756-IF16

      1756-IF16H

      1756-IF8

      1756-IF8H

      1756-IF8I

      1756-IF6I

      1756-IF6CIS

      1756-IT6I

       

      1794-IM16

      1794-IM8

      1794-IR8

      1794-IRT8

      1794-IT8

      1794-IV16

      1794-IV32

      1794-OA16

       

      1756-HSC

      1756-IA16

      1756-IA16I

      1756-IA32

      1756-IB16

      1756-IB16D

      1756-IB16I

      1756-IB32

       

      1756-CN2

      1756-CN2R

      1756-CNB

      1756-CNBR

      1756-DHRIO

      1756-DNB

      1756-EN2T

      1756-EN2TR

      1756-EN3TR

      1756-ENBT

      1756-ENET

      1756-EWEB

      1756-IR6I

      1756-IR12

      1756-IRT8I

      1756-IT6I2

      1756-IM16

      1756-L61

      1756-L62

      1756-L63

      1756-L64

      1756-L65

      1756-L71

      1756-L71S

       

      1756-M03SE

      1756-M08SE

      1756-M16SE

      1756-N2

      1756-OA16

      1756-OA16I

      1756-OB16D

      1756-OB16E

      1756-OB16I

      1756-OB32

      1756-OF4

      1756-OF8

       

      1756-BATA

      1756-CNB

      1756-IC16

      1756-IB16

      1756-IB32

      1756-IF16

      1756-IR61

      1734-ACNR

      1734-ADN

      1734-AENT

      1734-AENTR

      1734-APB

       

      1756-TBS6H

      1756-TBSH

      1757-SRM

      1746-N2

      1746-NI16I

      1746-NI4

       

      1756-PA75R

      1756-PB72

      1756-PB75

      1756-RM

      1756-IB16

      1746-IV32

       

      1756-OF8I

      1756-OW16I

      1756-PA72

      1756-PA75

      1794-OA8

      1794-OA8I

       

      1746-IA16

      1746-IB16

      1746-IB32

      1746-IM16

      1746-IO12DC

      1746-ITB16


      同步傳輸控制  1794-OF4IXT 羅克韋爾 模塊

    • Catapult AI NN 是一款全面解決方案,能夠幫助軟件工程師綜合 AI 神經網絡

    • 軟件開發團隊能夠將使用 Python 設計的 AI 模型無縫轉換為基于芯片的實現,與標準處理器相比,有助于更快、更節能的執行

    • 西門子數字化工業軟件日前推出 Catapult? AI NN 軟件,可幫助神經網絡加速器在專用集成電路 (ASIC) 和芯片級系統 (SoC) 上進行高層次綜合 (HLS)。Catapult AI NN 是一個綜合性解決方案,它能夠獲取 AI 框架中的神經網絡描述,然后將其轉換為 C++ 代碼,并合成為 Verilog 或 VHDL 語言的 RTL 加速器,以便在芯片中實現。

      Catapult AI NN 集成了用于機器學習硬件加速的開源軟件包 hls4ml,以及用于高層次綜合的西門子 Catapult? HLS 軟件。Catapult AI NN 由西門子與美國能源部費米實驗室以及其他為 hls4ml 做出貢獻的機構合作開發,能滿足機器學習加速器設計對于定制芯片功耗、性能和面積 (PPA) 方面的獨特要求。

      西門子數字化工業軟件副總裁兼高層次設計、驗證和功耗總經理 Mo Movahed 表示:“無論是神經網絡模型的交接過程,還是其向硬件實現的手動轉換,效率都非常很低,并且耗時、容易出錯,特別是在創建和驗證針對特定性能、功耗和面積定制的硬件加速器變體時。通過讓科學家和 AI 專家充分利用行業標準的 AI 框架 (例如神經網絡模型設計),并將這些模型無縫綜合到已經經過 PPA 優化的硬件設計中,我們能夠為 AI/ML 軟件工程師創造更多可能。使用西門子新的 Catapult AI NN 解決方案,開發人員能夠在軟件開發過程中自動實現神經網絡模型,同時進行 PPA 優化,有效提升 AI 的開發效率,并實現加速創新。”

      隨著 runtime AI 和機器學習任務從數據中心遷移至消費電器、醫療設備等領域,客戶對合適大小的 AI 硬件的需求也在快速增長,以減少功耗,降低成本,并實現終端產品差異化。然而,比起可綜合的 C++、Verilog 或 VHDL,多數機器學習專家更習慣使用 TensorFlow、PyTorch 或 Keras 等工具。過去,AI 專家要在合適大小的 ASIC 或 SoC 實現中加快機器學習應用,其實并沒有捷徑可走。hls4ml 計劃旨在將 TensorFlow、PyTorch 或 Keras 等 AI 框架中的神經網絡描述生成 C++ 代碼,幫助彌補這一缺陷。隨后即可部署這些 C++ 代碼,用于 FPGA、ASIC 或 SoC 實現。

      Catapult AI NN 能夠將 hls4ml 的功能擴展到 ASIC 和 SoC 設計,它包括針對 ASIC 設計量身定制的專用 C++ 機器學習功能資源庫。使用這些功能,設計人員能夠在各個 C++ 代碼實現之間進行延時和資源方面的權衡,從而實現 PPA 的優化。此外,設計人員現在還能夠評估不同神經網絡設計的影響,以確定硬件的理想神經網絡結構。

      “粒子探測器有非常嚴格的邊緣 AI 約束條件,”費米實驗室的新興技術主管 Panagiotis Spentzouris 表示,“我們與西門子合作開發 Catapult AI NN,這種綜合性框架充分利用了我們的科學家和 AI 專家的知識,即便他們并不是 ASIC 設計人員。此外,這種框架也非常適合經驗豐富的硬件專家使用。”

      Catapult AI NN 目前已向早期采用者提供,并將于 2024 年第 4 季度向所有用戶開放。

      同步傳輸控制  1794-OF4IXT 羅克韋爾 模塊

      聯系方式

      • 電  話:0592-6372630
      • 銷售經理:蘭順長
      • 手  機:18030129916
      • 微  信:18030129916