PLC模塊 CPU模塊 1794-IB10XOB6 超大庫存 現貨出售
| 更新時間 2025-01-10 13:30:00 價格 666元 / 件 品牌 A-B 型號 1794-IB10XOB6 產地 美國 聯系電話 0592-6372630 聯系手機 18030129916 聯系人 蘭順長 立即詢價 |
PLC模塊 CPU模塊 1794-IB10XOB6 超大庫存 現貨出售
1756-A10 1756-A13 1756-A17 1756-A4 1756-A7 1756-BA1 1756-BA2 1756-BATA | 1756-IF16 1756-IF16H 1756-IF8 1756-IF8H 1756-IF8I 1756-IF6I 1756-IF6CIS 1756-IT6I
| 1794-IM16 1794-IM8 1794-IR8 1794-IRT8 1794-IT8 1794-IV16 1794-IV32 1794-OA16
| 1756-HSC 1756-IA16 1756-IA16I 1756-IA32 1756-IB16 1756-IB16D 1756-IB16I 1756-IB32
|
1756-CN2 1756-CN2R 1756-CNB 1756-CNBR 1756-DHRIO 1756-DNB 1756-EN2T 1756-EN2TR 1756-EN3TR 1756-ENBT 1756-ENET 1756-EWEB | 1756-IR6I 1756-IR12 1756-IRT8I 1756-IT6I2 1756-IM16 1756-L61 1756-L62 1756-L63 1756-L64 1756-L65 1756-L71 1756-L71S
| 1756-M03SE 1756-M08SE 1756-M16SE 1756-N2 1756-OA16 1756-OA16I 1756-OB16D 1756-OB16E 1756-OB16I 1756-OB32 1756-OF4 1756-OF8
| 1756-BATA 1756-CNB 1756-IC16 1756-IB16 1756-IB32 1756-IF16 1756-IR61 1734-ACNR 1734-ADN 1734-AENT 1734-AENTR 1734-APB
|
1756-TBS6H 1756-TBSH 1757-SRM 1746-N2 1746-NI16I 1746-NI4
| 1756-PA75R 1756-PB72 1756-PB75 1756-RM 1756-IB16 1746-IV32
| 1756-OF8I 1756-OW16I 1756-PA72 1756-PA75 1794-OA8 1794-OA8I
| 1746-IA16 1746-IB16 1746-IB32 1746-IM16 1746-IO12DC 1746-ITB16 |
PLC模塊 CPU模塊 1794-IB10XOB6 超大庫存 現貨出售
01.
項目背景介紹
AIGC(即ArtificialIntelligence Generated Content),中文譯為人工智能生成內容。簡單來說,就是經過大量特征訓練過的神經網絡模型來對新的內容或者需求來生成人們需要的創作內容,類似使用人類用思考和創造力才能完成的工作過程,而現在可以利用人工智能技術來替代我們完成。在狹義上AIGC是指利用AI自動生成內容的生產方式,比如自動寫作、自動設計等。在廣義上,AIGC是指像人類一樣具備生成創造能力的AI技術,它可以基于訓練數據和生成算法來完成各類的內容生成創作。
在圖像生成模型生成方面主要的幾個代表模型,是以下常見的4個模型:
DNN
GAN
VAE
Diffusion
其中基于深度神經網絡(DNN)的進行圖像藝術風格轉移(Transform),生成高質量的具有藝術風格圖像的神經網絡模型。該模型通過深度神經網絡分別提取圖像中的內容和風格特征,然后對其目標圖片內容進行重組,生成具有原圖內容和藝術風格的圖像,其風格轉移不僅對圖像的圖案,顏色,特征等進行修改還保留原圖高可辨識的內容載體。
通常AIGC對硬件性能要求較高,只要具備高性能的圖形圖像的PC圖形工作站或者服務器上來運行。而這里我們將使用MYD-YG2L開發板上來實現在嵌入式設備上完成圖像風格轉移計算這一任務。并且結合圖形界面和USB攝像頭完成對任意拍攝的圖片進行圖像風格化的開發。讓嵌入式上也能夠體驗這種獨特的AIGC內容生成方式。
02.
技術硬件方案
項目采用MYD-YG2L為主控板,使用800萬像素4K級廣角USB相機鏡頭,通過采集畫面,在主控板內完成對畫面的風格化處理,并通過HDMI輸出顯示生成的圖像。
這里使用開發板連接HDMI顯示器和接入一個4K高清鏡頭,主要硬件連接如下圖:
03.
主要技術原理
圖像風格轉移的主要過程是對輸入img_content和img_style,然后要把img_content的內容主體和img_style進行一個結合,實現一個圖像的創意創作,這個過程也叫做Style Transform 即風格轉移。如下圖中,列是輸入的原圖像, 第二列是風格圖,第三列之后就是各種控制參數下的輸出風格圖像:
其核心的算法是把基于CNN卷積編碼后的特征向量transformer個結合到風格遷移任務中,再對混合后的內容進行解碼,從而輸出新的圖像內容,主要參考李飛飛論文,其核心流程如下圖:
經過測試MYD-YG2L較好的支持OpenCV這個工具庫,并且具備較強的圖像處理能力。那么就可以在板上使用OpenCV的DNN模塊來實現以上算法過程。OpenCV的DNN模塊從發行版開始,主要是支持推理,而數據訓練不是其支持的目標。因此我們可以使用已經訓練好的模型,在板上上完成推理過程,即圖像風格轉移生成的這一過程。現在OpenCV已經支持TensorFlow、Pytorch/Torch、Caffe、DarkNet等模型的讀取,OpenCV的 DNN模塊的用法。
PLC模塊 CPU模塊 1794-IB10XOB6 超大庫存 現貨出售
聯系方式
- 電 話:0592-6372630
- 銷售經理:蘭順長
- 手 機:18030129916
- 微 信:18030129916